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We consider the three-dimensional randomly diluted Ising model and study the critical behavior of the static
and dynamic spin-spin correlation functions �static and dynamic structure factors� at the paramagnetic-
ferromagnetic transition in the high-temperature phase. We consider a purely relaxational dynamics without
conservation laws, the so-called model A. We present Monte Carlo simulations and perturbative field-
theoretical calculations. While the critical behavior of the static structure factor is quite similar to that occur-
ring in pure Ising systems, the dynamic structure factor shows a substantially different critical behavior. In
particular, the dynamic correlation function shows a large-time decay rate which is momentum independent.
This effect is not related to the presence of the Griffiths tail, which is expected to be irrelevant in the critical
limit, but rather to the breaking of translational invariance, which occurs for any sample and which, at the
critical point, is not recovered even after the disorder average.
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I. INTRODUCTION AND SUMMARY

The effect of disorder on magnetic systems remains, after
decades of investigation, a not fully understood subject. It is
then natural to investigate relatively simple models to try to
understand the common features of disordered systems. In
this regard, randomly diluted spin systems are quite interest-
ing. First, they represent simple models which describe the
universal properties of the paramagnetic-ferromagnetic tran-
sition in uniaxial antiferromagnets with impurities �1� and, in
general, the order-disorder transition in Ising systems in the
presence of uncorrelated local dilution. Second, they give the
opportunity for investigating general problems concerning
the effects of disorder on the critical behavior. Indeed, sev-
eral important results, theoretical developments, and ap-
proximation schemes found for these models have been later
generalized to more complex systems like spin glasses, quan-
tum disordered spin models, etc.

In this paper we consider three-dimensional randomly di-
luted Ising �RDI� systems. Their critical behavior has been
extensively studied �1–3�. There is now ample evidence that
the magnetic transition in these systems, if it is continuous,
belongs to a unique universality class, and several universal
properties are now known quite accurately. Besides the static
critical behavior, we also investigate the dynamic critical be-
havior, considering a purely relaxation dynamics without
conservation laws, the so-called model A �4�, which is ap-
propriate for uniaxial antiferromagnets. We focus on the dy-
namic �time-dependent� spin-spin correlation function

G�x2 − x1,t2 − t1� � ���x1,t1���x2,t2�� , �1�

where ��x , t� is an Ising variable, the overline indicates the
quenched average over the disorder probability distribution,
and �¯� indicates the thermal average. From the function
G�x , t�, one obtains the static �equal-time� structure factor

G̃�k� and the dynamic structure factor Ĝ�k ,��. They are
physically relevant quantities, which can be measured in
neutron or x-ray scattering experiments �5�. It is therefore
interesting to study the effects of disorder on these physical

quantities and to check whether disorder gives rise to quali-
tative changes with respect to pure systems. We investigate
their scaling behavior close to the magnetic transition for T
→Tc

+ in the high-temperature phase. As we shall see, while
the critical behavior of the static structure factor is very simi-
lar to that in pure Ising systems, the critical behavior of the
dynamic structure factor is significantly different; in particu-
lar, the large-momentum behavior shows some new features.

Since the critical region in the paramagnetic phase, i.e.,
for T�Tc, is located in the Griffiths phase �6,7�, it is man-
datory to discuss first the relevance of the so-called Griffiths
singularities and Griffiths tails for the universal critical be-
havior of the correlation functions when T→Tc

+. In fact, one
of the most notable features of randomly diluted spin sys-
tems is the existence of the so-called Griffiths phase for Tc
�T�Tp, where Tp is the critical temperature of the pure
system. This is essentially related to the fact that, in the
presence of disorder, the critical temperature Tc is lower than
Tp, and therefore, in the temperature interval Tc�T�Tp,
there is a nonvanishing probability to find compact clusters
without vacancies �Griffiths islands� that are fully magne-
tized. They give rise to essential nonanalyticities in thermo-
dynamic quantities �6,7�. Moreover, these clusters are re-
sponsible for a nonexponential tail in dynamic correlation
functions �8–11�. In the case of RDI systems one can show
that

G�x,t� � GG�t� = B exp�− C�ln t�3/2� �2�

for any finite x and t→�, which implies a diverging relax-
ation time. We should mention that these effects are quite
difficult to detect, and there is still no consensus on their
experimental evidence even in systems with correlated dis-
order, in which these effects are magnified �see, e.g., Refs.
�7,12�, and references therein�.

Griffiths essential singularities give quantitatively negli-
gible effects on thermodynamic quantities and on the static
critical behavior. One can argue that also the Griffiths tail �2�
is irrelevant in the critical limit: the nonexponential tail does
not contribute to the critical scaling function associated with
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G�x , t� �8�. This is essentially due to the fact that B and C
that appear in Eq. �2� are expected to be smooth functions of
the temperature, approaching finite constants as T→Tc. Thus
in the critical limit, t→�, T→Tc at fixed t�−z, where �
	�T−Tc�−� is the diverging correlation length, the nonexpo-
nential contribution simply vanishes. To understand why, let
us consider the simplified situation in which the contribu-
tions to the autocorrelation function G�x , t� due to the Grif-
fiths islands and to the critical modes just sum as

G�t� � GC�t� + GG�t�

= a�b exp�− ct�−z� + B exp�− C�ln t�3/2� , �3�

where we neglect all couplings between Griffiths and critical
modes. Here, GC�t� is the critical contribution, while GG�t� is
the nonexponential Griffiths tail, which dominates for t	 t*,
where t* is the time at which the two terms have the same
magnitude. In the critical limit we have t*	�z�ln ��3/2. Since
the critical limit is taken at fixed t /� z, the relevant quantity is
t* /� z, which diverges as �ln ��3/2 approaching the phase tran-
sition. This means that, for any fixed value of t /� z, the con-
dition t
 t* is always satisfied sufficiently close to the criti-
cal temperature Tc, i.e., the nonexponential tail is negligible.

In order to determine the scaling behavior of the spin-spin
correlation function �1�, we perform Monte Carlo �MC�
simulations of a three-dimensional RDI model on a simple
cubic lattice and perturbative field-theoretical �FT� calcula-
tions. In the following we briefly summarize our main re-
sults.

The high-temperature critical behavior of the static struc-

ture factor G̃�k� is substantially analogous to that of G̃�k� in
pure Ising systems �13�. We consider the universal scaling

function g�Q2�� G̃�k� / G̃�0�, where Q2�k2�2 and � is the
second-moment correlation length. We find that g�Q2� is very
well-approximated by the Ornstein-Zernike form �Gaussian
free-field propagator� g�Q�OZ=1 / �1+Q2�: deviations are less
than 1% for Q�5 and increase to 5% at Q�50. At large
momenta, for Q�10 say, the static structure factor follows
the Fisher-Langer law �14�; in particular, g�Q2�
�0.92 /Q2−� with ��0.036 for Q�30.

At variance with the static case, the dynamic structure
factor displays substantial differences with respect to the
pure case, even though, as expected, the Griffiths tail turns
out to be irrelevant in the critical limit. We consider the
universal scaling function

�Q2,S� � lim
T→Tc

+

G̃�k,t�

G̃�k,0�
�4�

in the critical limit t→�, k→0, and T→Tc
+ at fixed Q and S.

Here S� t /�int, where �int is the zero-momentum integrated
autocorrelation time. Perturbative field theory shows that
�Q2 ,S� decays exponentially, as in the case of pure systems,
and this is confirmed by the simulation results. In pure Ising
systems �15� the large-S decay rate of �Q2 ,S� depends on
Q: the large-S behavior is very similar to that of �Q2 ,S�
in the noninteracting Gaussian model, i.e., �Q2 ,S�
	exp�−��Q2�S�, where ��Q2�= �1+Q2�. This behavior dras-

tically changes in the presence of random impurities; in par-
ticular, the large-S decay rate becomes independent of Q.
MC simulations and FT perturbative calculations show that,
for generic values of Q, �Q2 ,S� has two different behaviors
as a function of S. For small values of S, it decreases rapidly,
with a rate that increases as Q increases, as it does in the
pure system �15�. For large S instead, �Q2 ,S�, and therefore

G̃�k , t�, decreases with a momentum-independent rate. For
large Q and S we find

�Q2,S� 	 SaQ−�e−�S, �5�

where a and � are critical exponents, and � does not depend
on Q. We present a physical argument which relates the dif-
ferent large-S behavior compared to pure systems to the loss
of translational invariance. Such a phenomenon is obvious
for a given fixed sample, but at the critical point translational
invariance is not even recovered after averaging over disor-
der because of the absence of self-averaging. Note that this
phenomenon is only related to disorder and thus it is ex-
pected in all systems in which disorder is relevant.

In general, the perturbative calculations predict a scaling
behavior of the form

�Q2,S� 	 Q−�f��S� �6�

for large Q, where f��S� is a function of S such that f��S�
	Sae−�S for S→�. This behavior implies that G�x , t� is al-
ways nonanalytic for x=0 and any t. Indeed, because of Eq.
�6�, the integral


 ddQQ2n�Q2,S�g�Q2� 	 
 ddkk2nG̃�k,t� �7�

diverges for n�nc���+2−d−�� /2 �d is the spatial dimen-

sion�. Since the moments of G̃�k , t� are directly related to the
derivatives of G�x , t� with respect to x computed for x=0, the
nth derivative of G�x , t� diverges for n�nc; hence G�x , t� is
not analytic at x=0. This implies that the scaling function
F�Y2 ,S�, defined as

G�x,t� = �−d+2−�F�Y2,S�, Y2 � x2/�2, �8�

behaves as F�Y2 ,S�= f0�S�+ f��S��Y��+¯, where �=�+2
−d−�, for Y2→0. MC simulations indicate that ��2 in
three dimensions, which implies ��1. This phenomenon
does not occur in pure systems, since in this case the decay
rate � depends on Q and guarantees the integrability of the
integrand which appears in Eq. �7� for any n. Therefore
F�Y2 ,S� has an analytic expansion around Y2=0, i.e.,
F�Y2 ,S�= f0�S�+ f2�S�Y2+¯. This nonanalyticity should be
a general property of random models in which disorder is
relevant, and not specific of RDI systems.

Finally, it is worth mentioning that in the case of three-
dimensional randomly dilute multicomponent spin models,
such as the XY and the Heisenberg model, the effects of
disorder found in RDI models are expected to be suppressed
in the critical limit T→Tc

+, and should only appear as pecu-
liar scaling corrections �16�. Indeed, the asymptotic critical
behavior of the correlation functions is expected to be the
same as that in the corresponding pure model because the
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pure fixed point is stable under random dilution �according to
the Harris criterion �17�, dilution is irrelevant if the specific-
heat exponent � of the pure system is negative�.

The paper is organized as follows. In Sec. II we introduce
the model that we study. In Sec. III we discuss the static
structure factor in the high-temperature phase. In Sec. III A
we define the quantities that are computed in the MC simu-
lation, in Sec. III B we present some perturbative calcula-
tions, while in Sec. III C we discuss the MC results. In Sec.
IV we discuss the dynamic structure factor. Again, we first
define the basic quantities �Sec. IV A�, then we present a
one-loop perturbative calculation �Sec. IV B�, and finally we
report the MC results �Secs. IV C and IV D�. In the appen-
dixes we report some details of the perturbative calculations.

II. MODEL

We consider the randomly site-diluted Ising model with
Hamiltonian

H� = − �
�xy�

�x�y�x�y , �9�

where the sum is extended over all pairs of nearest-neighbor
sites of a simple cubic lattice, �x=�1 are Ising spin vari-
ables, and �x are uncorrelated quenched random variables,
which are equal to 1 with probability p �the spin concentra-
tion� and 0 with probability 1− p �the impurity concentra-
tion�. For ps�p�1, where ps is the site-percolation point
�ps=0.311 608 1�13� on a simple cubic lattice �18��, the
model has a continuous transition with a ferromagnetic low-
temperature phase.

MC simulations of RDI systems have shown rather con-
clusively �see, e.g., Refs. �1–3,19–21�� that their continuous
transitions belong to a single universality class. The RDI
universality class has been extensively studied by using FT
methods and MC simulations. At present, the most accurate
estimates of the critical exponents are �20� �=0.683�2� and
�=0.036�1�, obtained by a finite-size analysis of MC data.
These estimates are in good agreement with those obtained
by using field theory. An analysis of the six-loop perturbative
expansions in the three-dimensional massive zero-
momentum scheme gives �22� �=0.678�10� and �
=0.030�3�. Note the good agreement between FT and MC
results, in spite of the fact that the perturbative FT series for
dilute systems are not Borel summable �23–25�. Also the
correction-to-scaling exponents have been determined quite
accurately. For the leading exponent �, MC simulations give
�21� �=0.29�2� �older simulations gave �=0.33�3� �20� and
�=0.37�6� �19��, while field theory predicts �=0.25�10�
�22�, �=0.32�6� �26�. For the next-to-leading exponent �2,
an appropriate analysis of the FT expansions gives �20� �2
=0.82�8�, which is consistent with the MC results for im-
proved models �20,27�. Besides the critical exponents, also
the equation of state �28�, some amplitude ratios �28–30�, the
universal crossover functions between the pure and the RDI
fixed point �29� and between the Gaussian and the RDI fixed
point �29,31�, and the crossover exponent in the presence of
a weak magnetic field �32� have been computed.

A full characterization of the types of disorder that lead to
a transition in the RDI universality class is still lacking. For
instance, RDI transitions also occur in systems that are not
ferromagnetic: this is the case of the Edwards-Anderson
model ��J Ising model�, which is frustrated for any amount
of disorder �33�. Nonetheless, the paramagnetic-
ferromagnetic transition line that starts at the pure Ising tran-
sition point and ends at the multicritical Nishimori point be-
longs to the RDI universality class �34�.

Besides the static behavior, we also consider the critical
behavior of a purely relaxation dynamics without conserva-
tion laws, the so-called model A, as appropriate for uniaxial
magnets �4�. The critical behavior of the model-A dynamics
for RDI systems has been recently studied numerically �for a
critical review of the existing results, see Ref. �21��. It has
been shown that the relaxational dynamics belongs to a
single dynamic universality class �21�, characterized by the
dynamic critical exponent z=2.35�2�.

For Hamiltonian �9� an accurate study of the dependence
of the size of the corrections to scaling on p is reported in
Ref. �20�. It turns out that the leading scaling corrections
associated with �=0.29�2� are suppressed for p= p*

=0.800�5�, in agreement with the findings of Refs. �19,27�.
For this reason we have performed our simulations at p
=0.8.

III. STATIC STRUCTURE FACTOR IN THE HIGH-
TEMPERATURE PHASE

A. Definitions

We consider the static �equal-time� two-point correlation
function G�x��G�x , t=0�. In the infinite-volume limit we
define the second-moment correlation length �

�2 � −
1

�
 �G̃�k�

�k2 
k2=0

, �10�

where G̃�k� is the Fourier transform of G�x� and

�� �
x

G�x� = G̃�0� �11�

is the magnetic susceptibility. It is also possible to define an
exponential correlation length �exp. Given the infinite-volume
G�x�, we define

�exp � − lim
�x�→�

�x�
ln G�x�

. �12�

In the critical limit � and �exp diverge. If tr��T−Tc� /Tc and
Tc is the critical temperature, for �tr�→0 we have in the ther-
modynamic limit

�,�exp 	 �tr�−�, �13�

where � is a universal critical exponent. In the same limit,
correlation functions have a universal behavior. For instance,

the infinite-volume G̃�k� /� becomes a universal function of
the scaling variable
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Q2 � k2�2, �14�

i.e., we can write in the scaling limit k→0, tr→0 at fixed Q,

�−1G̃�k� � g�Q2� , �15�

where g�x� is universal. Moreover, the ratio �2 /�exp
2 con-

verges to a universal constant SM defined by

�2/�exp
2 � SM . �16�

For a Gaussian theory the spin-spin correlation function
shows the Ornstein-Zernike �OZ� behavior

G̃OZ�k� =
Z

k2 + r
. �17�

It follows �=Z /r, �2=1 /r, and

gOZ�Q2� =
1

1 + Q2 . �18�

Moreover, SM =1.
Fluctuations change this behavior. For small Q2, g�Q2� is

analytic, so that we can write the expansion

g�Q2�−1 = 1 + Q2 + �
n=2

cnQ2n, �19�

where the coefficients cn parametrize the deviations from the
OZ behavior. For large Q2, the structure factor behaves as

g�Q2� �
C1

Q2−��1 +
C2

Q�1−��/� +
C3

Q1/� + ¯ � , �20�

a behavior predicted theoretically by Fisher and Langer �14�
and proved in the FT framework in Refs. �35,36�.

B. Field-theory results

We determined the coefficients cn by using two different
FT approaches: the ��-expansion approach, in which the
renormalization-group parameters are computed as series in
powers of ��, �=4−d, and the massive zero-momentum
�MZM� approach, in which one works directly in three di-
mensions. We computed the first few coefficients cn to
O��3/2� in the �� expansion, and to four loops in the MZM
scheme. The corresponding expansions are reported in Ap-
pendix A. Setting �=1 in the �� expansions �A6�, we obtain
c2=−4�10−4, c3=1.0�10−5, c4=−4�10−7, and c5=2
�10−8. In the MZM approach, resumming the perturbative
expansions �A9� as discussed in Ref. �22�, we obtain

c2 = − 4�1�� 10−4, �21�

c3 = 1.2�3�� 10−5, �22�

c4 = − 5�2�� 10−7. �23�

These results are fully consistent with those obtained in the
�� expansion, in spite of the fact that in that case we have
not applied any resummation and we have simply set �=1.
We can also compute SM. Since the coefficients cn are very
small, we obtain

SM � 1 + c2 = 0.9996�1� , �24�

where we used the estimate �21� of c2. As in the Ising case
�13,37�, the coefficients cn show the pattern

�cn�
 �cn−1�
 ¯ 
 �c2�
 1 for n� 3. �25�

This is consistent with the expected analyticity properties of

G̃�k�. Since the complex-plane singularity in G̃�k�−1 that is
closest to the origin is expected to be the three-particle cut
located at k=�3i /�exp �38,39�, the function g�Q2�−1 is ana-
lytic up to Q2=−9SM. It follows that cn�−cn−1 / �3�SM�, at
least asymptotically.

The large-Q behavior can be investigated in the �� expan-
sion. The three-loop calculation of the two-point function
reported in Appendix A 1 allows us to determine the pertur-
bative expansion of the coefficients Ci appearing in Eq. �20�.
Setting �=1 in the expressions �A8�, we obtain C1�0.95,
C2+C3=−0.96.

In order to compare with the experimental and numerical
data it is important to determine g�Q2� for all values of Q.
For the pure Ising structure factor, several interpolations
have been proposed with the correct large- and small-Q be-
havior �13,38–43�. The most successful one is due to Bray
�39�, which incorporates the expected singularity structure of
g�Q2�. In this approach, one assumes 1 /g�Q2� to be well-
defined in the complex Q2 plane, with a cut on the negative
real Q2 axis, starting at the three-particle cut Q2=−r2 with
r2=9SM. Then, one obtains the spectral representation

H�Q2� � 

r

�

duu1−� F�u�
Q2 + u2 ,

1

g�Q2�
= 1 +

Q2H�Q2�
SMH�− SM�

, �26�

where F�u� is the spectral function, which must satisfy
F�+��=1, F�u�=0 for u�r, and F�u��0 for u�r.

In order to obtain an approximation one must specify
F�u�. Bray �39� proposed to use a spectral function that gives
exactly the Fisher-Langer asymptotic behavior, i.e.,

FB�u� =

P1�u� − P2�u�cot
1

2
��

P1�u�2 + P2�u�2 , �27�

where

P1�u� = 1 +
C2

up cos
�p

2
+

C3

u1/� cos
�

2�
,

P2�u� =
C2

up sin
�p

2
+

C3

u1/� sin
�

2�
, �28�

with p��1−�� /�. To obtain a numerical expression we fix
�=0.683, �=0.036 �20�, and use the estimate �24� of SM. We
must also fix C2 and C3. Bray proposes to fix C2+C3 to its
�-expansion value �in our case C2+C3=−0.96� and then to
determine these constants by requiring FB�u=r�=0. These
conditions give C2=−8.04 and C3=7.07. As a check, we can
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compare the estimates of cn and C1 obtained by using Bray’s
approximation gB�Q2� with the previously quoted results. We
obtain

C1 =
2 sin ��/2

�
SMH�− SM� � 0.92, �29�

and c2�−4�10−4, c3�9�10−6, and c4�−4�10−7. These
results are in very good agreement with those obtained be-
fore.

C. Monte Carlo results

In this section we study Hamiltonian �9� at p=0.8 in the
high-temperature phase, with the purpose of determining the

infinite-volume spin-spin correlation function G̃�k�. We per-
form simulations on lattices of size 32�L�256 in the range
0.275���0.2856 �note that �21� �c=0.285 743 1�3��. The
number of samples varies with N, being of the order of 3000,
10 000, 30 000, and 40 000 for L=256, 128, 64, and 32. For
each sample, we start from a random configuration, run 1000
Swendsen-Wang and 1000 METROPOLIS iterations for ther-
malization, and then perform 2000 Swendsen-Wang sweeps.
At each iteration we measure the correlation function

G�x ;� ,L� and the structure factor G̃�k ;� ,L�. Since rota-
tional invariance is recovered in the critical limit, to speed up
the Fourier transforms, we determine it as

G̃�k;�,L� =
1

3 �
x,y,z

�eikx + eiky + eikz����0,0,0���x,y,z�� ,

�30�

where the sum runs over the coordinates �x ,y ,z� of the lat-
tice sites. Of course, on a finite lattice k can only assume the
values 2�n /L, where n is an integer such that 0�n�L−1.
We also compute the second-moment correlation length
��� ,L� defined by

���,L�2 �
G̃�0;�,L� − G̃�kmin;�,L�

k̂min
2 G̃�kmin;�,L�

, �31�

where kmin�2� /L, k̂�2 sin k /2. For L→�, ��� ,L� con-
verges to the infinite-volume definition �10� with L−2 correc-
tions.

In order to determine g�Q2� we go through several differ-
ent steps. First, for each � and L we interpolate the numeri-

cal data in order to obtain G̃�k ;� ,L� for any k in the range
�0,��. For this purpose we fit the numerical results for

h�k ;� ,L�� G̃�0;� ,L� / G̃�k ;� ,L� to

h�k;�,L� = 1 + �
n=1

nmax

ank̂2n, k̂ = 2 sin
k

2
. �32�

We increase nmax until the sum of the residuals ��2� is less
than half of the fitted points �those corresponding to 1�n
�L−1�, i.e., �2�L /2 �note that the data are strongly corre-
lated and thus it makes no sense to require �2 /DOF�1,
where DOF=L−1−nmax is the number of degrees of freedom

of the fit�. In most of the cases we take nmax=5, but in a few
cases we had to take nmax as large as 10.

Then, we investigate the finite-size effects. In the critical
limit we expect

h�k;�,L� � F�Q � k���,L�,
���,L�

L
� . �33�

Equivalently, one can also use

h�k;�,L� � F�Q̂ � k̂���,L�,
���,L�

L
� , �34�

where k̂=2 sin k /2. The two scaling forms are equivalent in

the scaling limit k→0, L→�, ��� ,L�→� at fixed Q �or Q̂�
and ��� ,L� /L; as a consequence, the function F�x ,y� is the

same in the two cases. Indeed, k̂=k+O�k3�, and thus, by

keeping fixed Q̂ or Q, one only changes analytic corrections
decaying as L−2. In particular, whatever choice is made, the
structure factor g�Q2� is equal to 1 /F�Q ,0�. Apparently, the
corrections we are talking about here are less relevant than
the nonanalytic corrections that should decay as L−�2, �2
=0.82�8�, and thus, a priori one would expect only small
differences between the two approaches. Instead, as we show

below, only by keeping Q̂ fixed is one able to determine the
structure factor in the infinite-volume limit.

In Fig. 1 we show the numerical data for Q=10 �left� and

Q̂=10 �right�. On the left one observes very large size cor-
rections which make impossible in practice the determination
of the infinite-volume limit ��� ,L� /L→0. On the right in-
stead, there are no significant scaling corrections and all data
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FIG. 1. �Color online� Estimates of h�k ;� ,L� vs ��� ,L� /L at

fixed Q=10 �top� and Q̂=10 �bottom�. We only report data corre-
sponding to k�kmax=� /3. We also report an interpolating curve

�dashed line�, which is obtained by fitting all data at fixed Q̂ re-
ported on the right, as explained in the text.
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fall approximately on a single curve. Size corrections are
small for ��� ,L� /L�0.20 and the extrapolation to
��� ,L� /L→0 is feasible. In the two panels we also show the

interpolation of the data at fixed Q̂. As expected, the data at
fixed Q converge to this interpolation, but it is clear that no
real information could have been obtained on the infinite-
volume limit from the data in the left panel. In order to

clarify why scaling at fixed Q̂ is so much better than scaling
at fixed Q, we consider the lattice Gaussian model with
nearest-neighbor couplings. In this case, the spin-spin corre-
lation function on a finite lattice is given by

G̃G�k� =
Z

k̂2 + r
, �35�

so that �2=1 /r and

h�k� = 1 + Q̂2. �36�

Thus if we take the finite-size scaling limit at fixed Q̂ there
are no finite-size corrections: the scaling is exact on any
finite lattice. On the other hand, at fixed Q we obtain

h�k� � �1 + Q2��1 −
1

12L2

Q4�L2/�2�
1 + Q2 + ¯ � . �37�

In this case we have 1 /L2 corrections, which diverge as
� /L→0, exactly as we observe in our data. These correc-
tions, moreover, increase with Q and thus make it difficult, if
not impossible, to estimate the structure factor.

As a consequence of the above-reported discussion we

consider below the finite-size scaling limit at fixed Q̂. In Fig.

2 we show h�k ;� ,L� for Q̂=5, 20, and 50. Since k̂ can be at

most 2, for each Q̂ we can only consider values of � and L

such that ��� ,L�� Q̂ /2. However, since the critical limit is
obtained for k→0, results close to the antiferromagnetic
point k=� cannot have a good scaling behavior. Therefore in
the analysis we have only considered values of k such that
k�kmax. If kmax varies between � /4 and � /3, the final re-
sults are essentially independent of kmax. The data reported in
Figs. 1 and 2 scale as predicted by Eq. �34�. Within the
precision of our results some corrections to scaling are only

visible for Q̂=5 and ��� ,L� /L�0.2. They, however, die out
fast in the interesting limit ��� ,L� /L→0. Note also that, as

Q̂ increases, the number of available points decreases and

indeed we are not able to go beyond Q̂�50 with our data.
In order to determine the infinite-volume limit F�Q ,0�,

we have taken all data satisfying ��� ,L� /L�0.5 and we
have fitted them to

�h�k;�,L��k̂�=Q̂ = a0 + �
j=1

jmax

aj exp�− jL/���,L�� . �38�

The fitting form �38� is motivated by theory, which predicts
exponentially small finite-size corrections in the high-
temperature phase. With the precision of our data it is suffi-
cient to take jmax=2 to obtain �2 /DOF�1. The coefficient
a0 allows us to estimate g�Q2�: g�Q2�=1 /F�Q ,0�=1 /a0. The

results for kmax=� /4 and � /3 are essentially identical within
errors up to Q�40 �for kmax=� /4 we do not have enough
data to determine reliably F�Q ,0� for Q�40�. In the follow-
ing we take those corresponding to kmax=� /3, which allow

us to compute g�Q2� up to Q̂=50. In order to detect scaling
corrections we have repeated the analysis including each
time only data such that L�Lmin. The results are essentially

independent of Lmin. For instance, for Q̂=5, one of the values
we considered in Fig. 2 �in this case some scaling corrections
are present for ��� ,L� /L�0.20�, we obtain a0=25.881�6�,
25.881�7�, and 25.882�9� for Lmin=32, 64, and 128, respec-
tively. This is due to the fact that a0 is determined by the
results at small values of ��� ,L� /L and in this range there
are essentially no scaling corrections. In the following we
choose conservatively Lmin=64.

Our final estimate of g�Q2� is reported in Fig. 3. Devia-
tions from the OZ behavior are quantitatively small and in-
deed at Q=50 the relative deviation is only 0.05. It is impor-
tant to note that the estimates of g�Q2� at different values of

Q are correlated since the estimates of G̃�k ;� ,L� for differ-
ent values of k are statistically correlated. This explains the
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FIG. 2. �Color online� MC results for h�k ;� ,L� vs ��� ,L� /L at

fixed Q̂ for three different values of Q̂: 5 �top�, 20 �middle�, and 50
�bottom�. Only data satisfying k�kmax=� /3 are reported. The in-
terpolation �dashed line� corresponds to a fit of the data with L
�64 as described in the text.
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regularity of the results. Note also that the error changes
rather abruptly in a few cases. For instance, this occurs be-
tween Q=40 and 41. This happens because at Q=40, the
estimate of a0 is essentially determined by the result obtained
for �=0.2853, L=256, which corresponds to ��� ,L� /L

=0.158 and k̂=0.989. For Q=41 this lattice is no longer con-

sidered, since the corresponding k exceeds kmax=� /3 �k̂max

=1�. For Q=41, the result with the smallest ��� ,L� /L corre-
sponds to ��� ,L� /L=0.236. The extrapolation to the infinite-
volume limit is therefore much more imprecise.

For Q→�, g�Q2��C1 /Q2−�, see Eq. �20�. We fit the es-
timates of ln g�Q2� reported in Fig. 3 �they correspond to
integer values of Q between 1 and 50� to a+ ��−2�ln Q. If
we include only data with Q�Qmin=15 and 20, we obtain
�=0.032�1� and 0.032�2�, respectively. The error we quote
here assumes that all data are independent, which is not the
case. In order to determine the correct error bar, one should
take into account the covariance among the results at differ-
ent values of Q. This is not easy and therefore, in order to
estimate the role of the statistical correlations, we use a more
phenomenological approach. If gest�Q2� is the estimate of
g�Q2� and ��Q2� the corresponding error, we consider new
data gest�Q2�−��Q2� with the same error and we repeat the
fit. We obtain �=0.029 and 0.027 for Qmin=15 and 20.
Analogously, if we consider gest�Q2�+��Q2�, we obtain �
=0.035 and 0.037. This simple analysis indicates that
�0.005 is a plausible estimate of the statistical error. There-
fore we quote �=0.032�5� as our final result. This estimate is
in good agreement with that reported in Ref. �20�, �
=0.036�1�, obtained from a finite-size scaling analysis of the
susceptibility. In order to estimate C1, we consider
g�Q2�Q2−�, fixing � to �=0.036�1� �20�. For Q�20 this
quantity is essentially constant: g�Q2�Q2−�=0.921�1�,
0.920�1�, 0.917�2�, and 0.919�3� for Q=20, 25, 30, and 35.
We thus take

C1 = 0.919�3��3� �39�

as our final estimate. The error in brackets gives the variation
of the estimate as � varies by one error bar ��0.001�. This

estimate is close to the FT result C1�0.95 and in perfect
agreement with the estimate �29� obtained by using Bray’s
approximation for the spectral function, C1�0.92. Indeed, as
can be seen in Fig. 3, Bray’s interpolation represents a very
good approximation of the numerical data, deviations being
quite tiny.

In Fig. 3 we also report the structure factor in pure Ising
systems �we use the phenomenological approximation re-
ported in Ref. �13�, see their Eq. �30� with Qmax=15 and
nmax=6�. In the pure case, deviations from the OZ behavior
are larger: the addition of impurities has the effect of reduc-
ing the deviations from the OZ behavior.

Finally, we report a phenomenological interpolation
which reproduces well our numerical data and is consistent
with the large Q2 behavior, g�Q2��0.919Q0.036 / �1+Q2�:

gint�Q2� =
�1 + 0.022 795 3Q2 + 0.000 083 935 5Q4�0.009

1 + Q2 .

�40�

IV. DYNAMIC STRUCTURE FACTOR IN THE HIGH-
TEMPERATURE PHASE

In this section we consider the dynamic behavior of the
METROPOLIS algorithm, which is a particular example of a
relaxational dynamics without conservation laws, the so-
called model A, as appropriate for magnetic systems. In Ref.
�21� we computed the dynamic critical exponent, obtaining
z=2.35�2�. Here, we focus on the dynamic structure factor.

A. Definitions

To investigate the dynamic behavior we consider the
time-dependent two-point correlation function �1� and its

Fourier transform G̃�k , t� with respect to the x variable. Then,
we define the integrated autocorrelation time

�int�k� �
1

2 �
t=−�

�
G̃�k,t�

G̃�k,0�
=

1

2
+ �

t=1

�
G̃�k,t�

G̃�k,0�
�41�

and the exponential autocorrelation time

�exp�k� � − lim
�t�→�

�t�

ln G̃�k,t�
, �42�

which controls the large-t behavior of G̃�k , t�. Here t is the
METROPOLIS time and one time unit corresponds to a com-
plete lattice sweep.

Beside �int�k� and �exp�k� we also define autocorrelation
times �int,x and �exp,x �21�. In general, given an autocorrela-
tion function A�t� we define

I�s� �
1

2
+

1

A�0��t=1

s

A�t� , �43�

�eff�s� �
n

ln�A�s − n/2�/A�s + n/2��
, �44�

for any integer s and any fixed even n. By linear interpola-
tion these functions can be extended to any real s. Then, we
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FIG. 3. �Color online� Estimates of the scaling function g�Q2�
��1+Q2� for integer values of Q. We also report Bray’s approxi-
mation, in which C2+C3 is fixed to the �� value �Bray-��, and the
structure factor for the pure Ising model �Ising�. The curve “interp”
�solid line� corresponds to the interpolation gint�Q2� reported in Eq.
�40�.
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define �int,x and �exp,x as the solutions of the consistency
equations

�exp,x = �eff�x�exp,x� , �45�

�int,x = I�x�int,x� . �46�

These definitions have been discussed in Ref. �21�. There, it
was shown that they provide effective autocorrelation times
with the correct critical behavior. For x→�, �exp,x and �int,x
converge to �exp and �int, respectively.

As discussed in the Introduction, for Tc�T�Tp the cor-
relation function G�x , t� does not decay exponentially for any
finite value of x, but presents a slowly decaying tail, cf. Eq.
�2�. Therefore �exp�k� diverges for all Tc�T�Tp. As dis-
cussed in Ref. �21�, this is not the case for the effective
exponential autocorrelation time �exp,x, which is finite for any
finite x. Note that correlation functions decaying as in Eq. �2�
have a finite time integral and thus the integrated autocorre-
lation time is finite.

In the critical limit the autocorrelation times diverge. If
tr��T−Tc� /Tc and Tc is the critical temperature, for �tr �
→0 we have

�int�k� 	 �exp,x�k� 	 �int,x�k� 	 �tr�−z� 	 �z, �47�

where � is the usual static exponent and z is a dynamic
exponent that depends on the considered dynamics: �
=0.683�2� and z=2.35�2� in the present case �20,21�. In the

same limit, G̃�k , t� / G̃�k ,0� becomes a universal function of
the scaling variables

Q2 � k2�2, S � t/�int�0� , �48�

i.e., we can write

G̃�k,t�

G̃�k,0�
= �Q2,S� , �49�

where �Q2 ,S� is universal, even in S, i.e., �Q2 ,S�
=�Q2 ,−S�, and satisfies the normalization conditions

�Q2,0� = 1, 

0

�

�0,S�dS = 1. �50�

The function G̃�k ,0� is the static structure factor whose criti-
cal behavior has been discussed in Sec. III A. Using Eq. �15�
we can write G̃�k , t�=�g�Q2��Q2 ,S�. Analogously, we have

�int�k�
�int�0�

� f int�Q2� , �51�

where the scaling function f int�Q2� is universal and satisfies
f int�0�=1.

It is important to note that Eq. �2� does not necessarily
imply that the scaling function �Q2 ,S� decays nonexponen-
tially. On the contrary, as argued in Sec. I, the Griffiths tail
�2� becomes irrelevant in the critical limit. In view of that
discussion it is natural to define a scaling function

fexp�Q2� � − lim
�S�→�

�S�
ln �Q2,S�

, �52�

which we call, rather loosely, the scaling function associated
with the exponential autocorrelation time. Indeed, if fexp�Q2�
is finite, for S→� we have

�Q2,S� 	 Sa exp�− S/fexp�Q2�� , �53�

where a is some critical exponent. In terms of quantities that
are directly accessible numerically, we can define it as

fexp�Q2� = lim
x→�

lim
k→0;�→�

�exp,x�k�
�int�0�

. �54�

Of course, the two limits cannot be interchanged.

The dynamic structure factor Ĝ�k ,�� is defined as

Ĝ�k,�� = 

−�

�

dtG̃�k,t�ei�t = 2

0

�

dtG̃�k,t�cos �t . �55�

In the scaling limit we introduce a new scaling function
��Q2 ,w� defined by

��Q2,w� �
Ĝ�k,��

�int�0�G̃�k,0�
, w � ��int�0� . �56�

The function ��Q2 ,w� is essentially the ratio of the dynamic
and static structure factors and is directly related to �Q2 ,S�:

��Q2,w� = 2

0

�

dS�Q2,S�cos wS . �57�

It is even in w and satisfies the normalization conditions:

��0,0� = 2, 

−�

� dw

2�
��Q2,w� = 1. �58�

Moreover, we have ��Q2 ,0�=2f int�Q2�.
For a Gaussian theory the spin-spin correlation function is

given by

G̃G�k,t� =
Ze−��k2+r��t�

k2 + r
. �59�

It follows �int�k�= ���k2+r��−1, so that

�Q2,S� = e−�Q2+1��S�, f int�Q2� = fexp�Q2� =
1

1 + Q2 .

�60�

Finally, we have

��Q2,w� =
2�1 + Q2�

w2 + �1 + Q2�2 . �61�

B. Field-theory results

The dynamic structure factor can be computed in pertur-
bation theory. The explicit one-loop calculation is reported in
Appendix B. Two facts should be noted. First, perturbation
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theory predicts an exponential decay for �Q2 ,S� for any Q2.
This is consistent with the argument presented in the Intro-
duction, which predicted the absence of the Griffiths tail in
the critical scaling functions. Second, one-loop perturbation
theory predicts fexp�Q2� to be independent of Q2. We wish
now to argue that this result is exact and is related to the
breaking of translational invariance in disordered systems.
Indeed, consider the spin-spin correlation function for a
given disorder configuration ���,

��x1,x2;t1 − t2;���� � ���x1,t1���x2,t2���, �62�

and the corresponding Fourier transform

�̃�k1,k2;t1 − t2;���� = �
x1x2

eik1x1+ik2x2��x1,x2;t1 − t2;���� .

�63�

In pure systems translational invariance implies that
�̃�k1 ,k2 ; t1− t2 ; ���� vanishes unless k1=−k2. This is not the
case in disordered systems, where translational invariance is
lost. The average of �̃ over disorder vanishes for k1�−k2 �it
indeed corresponds to G̃�k , t1− t2��, and thus translational in-
variance is somewhat recovered. However, this does not
mean that the critical theory is translationally invariant. For
instance, consider

��̃�k1,k2;t1 − t2;�����2. �64�

It can be easily verified in perturbation theory that this quan-
tity is not zero for any k1 and k2. Note that this breaking of
translational invariance survives in the infinite-volume limit
only close to the critical point. In the paramagnetic phase, far
from the critical transition, self-averaging occurs and thus
also the quantity �64� vanishes for k1�−k2 when L→�.

Let us now show that, if translational invariance �both for
the Hamiltonian and the transition rates� holds, the decay
rate is k dependent: modes corresponding to different mo-
menta decouple. Indeed, following Refs. �9,44�, let L be the
Liouville operator associated with the dynamics, and �a and
�a be the corresponding eigenvalues and eigenvectors. Then,
we have the spectral representation �t�0�

G̃�k,t� = �
a

e−�at����k���a��2, �65�

where the sum runs over all eigenstates with a nonvanishing
eigenvalue of L. Here we have introduced the inner product

�f �g� = �
�

��f
�
*g�, �66�

where f and g are functions defined over the configuration
space, �� is the equilibrium distribution, and the sum runs
over all configurations � of the system. If the system is trans-
lationally invariant, L commutes with the generator T of the
translations; hence the eigenstates of L are also eigenstates
of T. Thus we have decoupled sectors corresponding to dif-
ferent values of the momentum k and therefore we have

G̃�k,t� = �
a

e−�a�k�t����k���a�k���2, �67�

where the sum runs over the eigenstates of momentum k.
Hence if �1�k� is the smallest eigenvalue in each sector, we

have G̃�k , t�	e−�t with �=�1�k�; hence the decay rate is
k-dependent. If translational invariance is lost, all eigenfunc-
tions contribute to each single value of k. Note, however, that
this does not necessarily imply that the decay rate � in Eq.
�5� is Q independent. Indeed, one should average over the
disorder distribution and this average could wash out the
effect. We expect this to happen in the infinite-volume limit
at fixed T, for T�Tc. The perturbative results show that this
is not the case at the critical point. Hence all modes are
coupled in the critical limit and � is momentum independent.
This argument indicates that the Q-independence of � is
strictly related to the breaking of self-averaging at the critical
point and thus we expect a similar phenomenon to occur for
the low-temperature critical dynamical structure factor.

In Fig. 4 we report �Q2 ,S� as obtained by using Eqs.
�B29� and �B32� and simply setting �=1. The behavior we
observe is quite different from what is observed in the
Gaussian model. In this case, Eq. �60� implies ln �Q2 ,S�
=−�1+Q2��S�. As a consequence, with a logarithmic vertical
scale, the data fall on straight lines with increasing slope as
Q2→�. Here instead, �Q2 ,S� first decreases rapidly and
then bends so that the large-S decay is Q2-independent. This
behavior is also very different from that observed in the pure
Ising model, whose dynamical critical behavior is very close
to that of the Gaussian model �15�.

If fexp�Q2�= fexp is independent of Q2, for S→� we ex-
pect a behavior of the form

�Q2,S� � f�Q2�Sa exp�− S/fexp� , �68�

where a is a critical exponent. At one loop, the calculations
reported in Appendix B give a=0 for Q2=0, a=−1 for Q2

�0, and f�Q2�	Q−2 for Q→�. In general, we expect f�Q2�
to vanish with a nontrivial exponent in the large-Q limit and
thus we write

f�Q2� 	 Q−� �69�

with a new exponent �.
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FIG. 4. �Color online� Scaling function �Q2 ,S� as a function of
S, as obtained in one-loop perturbation theory.
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Given G̃�k , t�, one can compute G�x , t�, which can be
written in the scaling form

G�x,t� = �−d+2−�F�Y2,S�, Y2 � x2/�2. �70�

Perturbation theory, see Appendix B, indicates that F�Y2 ,S�
is not analytic for Y2→0. It predicts a behavior of the form

F�Y2,S� = f0�S� + f��S��Y�� + ¯ , �71�

where � is a new exponent that can be related to the expo-
nent � which appears in Eq. �69�: �=�−1−� �in d dimen-
sions, as we discuss in Appendix B, �=�+2−d−��. The
exponent � is positive �hence � must be larger than 1+��,
since G�x=0, t� is always finite. The quantity f��S��Y�� rep-
resents a subleading nonanalytic correction to the leading
term f0�S�.

Finally, in Fig. 5 we report the one-loop perturbative ex-
pression of ��Q2 ,w�. Note that the width of ��Q2 ,w� does
not decrease with increasing Q2, as it does in the Gaussian
model. This is a consequence of the large-S behavior of
�Q2 ,S�, whose decay is independent of Q2.

C. Simulation details

In this section we study the critical dynamics of Hamil-
tonian �9� at p=0.8 in the high-temperature phase, with the
purpose of determining the time-dependent spin-spin corre-

lation function G̃�k , t� and the related dynamic structure fac-

tor Ĝ�k ,��. We perform simulations on lattices of size
L�128 in the range 0.275���0.284, corresponding to
4���16. For each disorder sample, we start from a ran-
dom configuration, run 1000 Swendsen-Wang and 1000
METROPOLIS iterations for thermalization, and then Nit
METROPOLIS sweeps �typically, we took Nit varying between
30�int�0� and 100�int�0��. The number of samples varies be-
tween 5000 and 20 000. We measure the second-moment
correlation length ��� ,L� defined in Eq. �31� and the corre-

lation function G̃�k , t�. As we did for the static structure fac-

tor, we determine G̃�k , t� as

G̃�k,t� =
1

3 �
x,y,z

�eikx + eiky + eikz����0,0,0;0���x,y,z;t�� ,

�72�

where the sum runs over the coordinates �x ,y ,z� of the lat-
tice sites; the time t is expressed in units of METROPOLIS

lattice sweeps.

Given G̃�k , t�, we determine �int�0�. More precisely, we
determine �int,x�0� with x=5, as defined by the self-consistent
equation �46�. As discussed above, this is a good autocorre-
lation time for any x; therefore we use this quantity to obtain
a high-temperature estimate of z. We have also determined
�int,x�0� with x=8. The results for x=5 and 8 are consistent
within errors, indicating that we can take �int,5�0� as an esti-
mate of �int�0�. We also consider the effective exponents

�exp,x�0� defined by Eqs. �44� and �45� with A�t�= G̃�k=0, t�.
The results we quote correspond to n=2.

Some results are reported in Table I. Since we are inter-
ested in infinite-volume quantities, we must be sure that
finite-size effects are negligible. A detailed check is per-
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FIG. 5. �Color online� Scaling function ��Q2 ,w� as a function
of w���int�0�, as obtained in one-loop perturbation theory.

TABLE I. MC results for the randomly site-diluted Ising model at p=0.8. We report the number of samples Ns, the number of
METROPOLIS iterations in equilibrium Nit, the second-moment correlation length �, the zero-momentum integrated autocorrelation time �int�0�,
and the effective zero-momentum exponential autocorrelation times �exp,x�0�, for x=1,2.

� L Ns Nit � �int�0� �exp,1�0� �exp,2�0�

0.275 32 20000 30000 4.452�4� 36.66�27� 37.92�18� 39.9�5�
0.278 32 20000 5000 5.601�4� 62.25�23� 65.70�25� 71.3�6�

64 20000 5000 5.622�2� 61.98�21� 65.41�30� 69.4�9�
0.280 32 20000 8000 6.872�7� 102.1�6� 106.8�5� 118.2�1.2�
0.281 32 20000 10000 7.800�9� 139.4�7� 146.7�7� 164.1�1.7�

64 20000 5000 7.917�4� 139.7�8� 148.2�7� 158�2�
128 10000 5000 7.924�2� 138.8�1.0� 147.1�1.1� 157�3�

0.282 64 15000 20000 9.331�6� 207.0�1.0� 220�2� 238�3�
128 5000 20000 9.346�5� 205.5�1.6� 218.8�1.3� 232�4�

0.283 64 20000 20000 11.551�10� 342.8�2.1� 361.0�1.6� 402�4�
0.284 128 5000 50000 15.837�16� 716�6� 753�9� 842�19�
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formed at �=0.281, where we can compare simulation re-
sults at different values of L, corresponding to ��� ,L� /L
�0.24, 0.12, and 0.06. No scaling corrections are observed
in �int�0� within the quoted errors, and thus, for each �, we
assume that the estimate of �int�0� for the largest lattices is an
infinite-volume result. Also �exp,1�0� apparently does not
show finite-size effects. On the other hand, �exp,2�0� is clearly
decreasing as L increases. This indicates that finite-size ef-

fects on G̃�k , t� increase with t, a result that we will check
explicitly below, considering the correlation function.

D. Dynamic structure factor

We first use the estimates of the autocorrelation times to
obtain an estimate of z. Since the model is approximately
improved �20�, the scaling corrections proportional to ��c

−����, �=0.29�3� are suppressed. Thus the leading scaling
corrections behave as ��c−���2�, where �2=0.82�8� is the
next-to-leading correction-to-scaling exponent. Hence ����
behaves as

���� � c��c − ��−z��1 + b��c − �� 2 + ¯ � , �73�

where  2=��2=0.56�6�. Thus we fit the data to

ln ���� = − z� ln��c − �� + a + b��c − �� 2, �74�

setting �c=0.285 743 1�3� �20,21�. If we fit �int�0�, including
only the data satisfying ���min, we obtain z�=1.64�3�,
1.59�4�, and 1.62�8� for �min=0.275, 0.278, and 0.280. The
results are stable with �min and allows us to estimate z�
=1.61�6� that includes all estimates with their error bars. If
we now use �20� �=0.683�2�, we obtain

z = 2.36�9� , �75�

which is in perfect agreement with the estimate z=2.35�2�
obtained at the critical point �21�. As a check we have re-
peated the analysis by using �exp,1�0�. We obtain z�
=1.59�3�, 1.56�5�, and 1.47�10� for �min=0.275, 0.278, and
0.280, which are essentially consistent with the estimates
obtained above.

Let us now consider G̃�k , t�. Let us first focus on the case
k=Q=0. Numerical results are reported in Fig. 6 vs S
� t /�int�0�. Scaling and finite-size corrections are small and

indeed all data fall approximately onto a single curve. Some
deviations are only observed for S�3, indicating that finite-
size corrections increase with S. Let us now consider the
large-S behavior and let us estimate the universal ratio
fexp�0�. The data show a reasonably good exponential behav-
ior so that we can assume that we are considering values of t

that are much before the region in which G̃�0, t� shows the
Griffiths tail. We perform fits of the form

ln
G̃�0,t�

G̃�0,0�
= a − bt , �76�

including each time only data in the range Smin�S�Smax
�5. The fit parameter b provides an estimate of fexp�0�: in
the critical limit fexp�0�= �b�int�0��−1. Since finite-size correc-
tions are important, we only consider data with small � /L. In
Fig. 7 we report the results corresponding to two sets of data.
In fit �a� we consider three sets of results: those correspond-
ing to L=64, �=0.278 and those with L=128 and �
=0.281,0.282. Correspondingly, we have ��� ,L� /L=0.088,
0.061, and 0.073, respectively. In fit �b� we only use the
lattice with the smallest value of � /L available: L=128 and
�=0.281. The results of fit �a� become independent of Smin
for Smin�2.5 and give fexp�0�=1.21�1�. Fit �b� is less stable
and a plateau is less evident. They hint at a lower value for
the ratio, varying between 1.20 �at Smin=3� and 1.18 �at
Smin=4�, though with a large statistical error. We have also
analyzed the data corresponding to lattices with larger � /L,
finding larger values of �b�int�0��−1. This indicates that this
quantity decreases with decreasing ��� ,L� /L and thus the
difference obtained between fits �a� and �b� may be a real
finite-size effect. For this reason our final result corresponds
to fit �b�. We quote

fexp�0� = 1.19�3� , �77�

where the error has been chosen conservatively, in order to
include the result of fit �a� with its error. This result is very
close to the one-loop FT estimate. Equation �B32� gives
fexp�1.168 for �=1.
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FIG. 6. �Color online� Scaling function G̃�0, t� / G̃�0,0� as a
function of S, for different values of � and L.
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FIG. 7. �Color online� Estimates of �b�int�0��−1, which con-
verges to fexp�0� in the critical limit. The coefficient b is obtained

by fitting G̃�0, t� / G̃�0,0�, as described in the text, see Eq. �76�. In
fit �a� we consider together the data corresponding to �L=64, �
=0.278�, �L=128, �=0.281�, and �L=128, �=0.282�. In fit �b� we
only consider the results obtained for L=128, �=0.281.

STATIC AND DYNAMIC STRUCTURE FACTORS IN … PHYSICAL REVIEW E 77, 021126 �2008�

021126-11



Finally, we provide an interpolation of our numerical data.
The curves reported in Fig. 6 are well-fitted by a function of
the form

�0,S� = e−�S + �
k=1

4

ak
�cS�k

1 + �cS�4e�S . �78�

The constant � has been fixed by using Eq. �77�: we take
�=0.840�1 /1.19. All other constants have been obtained by
a fit of the data for 0�S�5. We obtain c=1.69, a1
=−0.238 25, a2=0.164 30, a3=0.132 61, and a4=−0.280 28.
As a check of this parametrization we verify the normaliza-
tion conditions �50�. The first condition is satisfied exactly,
the second one to very good precision: the integral between 0
and infinity of �0,S� as given by the parametrization �78� is
equal to 1.0033.

Let us now consider G̃�k , t� for k�0. Again, let us first
discuss the finite-size and scaling corrections. For this pur-

pose, we must compare G̃�k , t� for different values of � and
L, but at the same value of Q�k�. Since the momenta ac-
cessible on a finite lattice of size L are quantized and there-
fore estimates are obtained only for Q=2�n� /L, n an inte-
ger, for each t we should interpolate the numerical data as we
did in Sec. III C. However, by a fortunate accident, such an
interpolation is not needed here. Indeed, the lattice with L
=64, �=0.281 and that of L=128, �=0.284 have both
��� ,L� /L=0.1237�1�. Moreover, for L=128, �=0.281, � /L
is exactly 1 /2 �within the small statistical errors� of the pre-
vious value. Thus results with the same k for the first two
systems and those with 2k for the third one correspond quite
precisely to the same value of Q. In Fig. 8 we report results
corresponding to Q=2��0.1237�0.78 and Q=20�
�0.1237�7.8. All results fall again onto a single curve for
both values of Q. Finite-size and scaling corrections are ap-
parently negligible in this range of values of Q and S. This
result should be compared with what we observed for the
static structure factor in Sec. III C. There, a good scaling

behavior was only observed at fixed Q̂ and not at fixed Q.
Here instead, scaling corrections at fixed Q are quite small;

the behavior at fixed Q̂ is actually slightly worse.
An important prediction of the FT analysis is that

�Q2 ,S� decays with the same rate for all values of Q. To

check this prediction we consider the ratio G̃�k , t� / G̃�0, t�,
which converges to �Q2 ,S� /�0,S� in the scaling limit. For
S→�, this quantity should behave as

S� exp�− S�fexp�Q2�−1 − fexp�0�−1�� , �79�

where � is some critical exponent. Field theory predicts
fexp�Q2�= fexp independent of Q, so that we expect
�Q2 ,S� /�0,S� to behave as S� for large S, without expo-
nential factors. Thus, if field theory is correct,

ln�G̃�k , t� / G̃�0, t�� should become constant as t increases,
apart from possible slowly varying logarithmic corrections.
In Fig. 9 we show this ratio for the lattice with �=0.282,
L=128, which has been chosen because of its relatively
small errors up to S�4. The results for �=0.284, L=128,
which are more asymptotic and give access to larger values
of Q, are more noisy. The plot shows that the MC data are
consistent with the FT prediction. Note that the constant be-
havior is observed better for larger values of Q. This is in
agreement with the FT results shown in Fig. 4 and can be
understood qualitatively quite easily. Roughly, at one loop
�Q2 ,S� is the sum of two terms,

ae−S + be−�1+Q2�S �80�

�we neglect here additional powers of Q and S�, so that the
ratio we are considering corresponds to �a+be−Q2S� / �a+b�.
Thus the ratio approaches a constant with corrections of or-
der e−Q2S. For large Q2 they die out fast, and thus a constant
behavior is observed for small values of S.

While the decay rate of �Q2 ,S� is independent of Q2, the
amplitude decreases rapidly with Q2. For large Q2 we expect
the behavior �Q2 ,S�	SaQ−� exp�−�S�, where �=1 / fexp,
see Eq. �68�. We wish now to obtain a rough estimate of the
exponent �. For this purpose we take the data that appear in
Fig. 9 and we multiply them by Q�, trying to fix � in such a
way to obtain a good collapse of the data. In Fig. 10 we
report the scaled results corresponding to two different val-
ues of �. If we try to have a good collapse of the data corre-
sponding to n=4, 8, and 12 the best result is obtained for �
=2.3. However, the data with n=20 behave in a significantly
different way. If we try to include also the data with n=20,
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FIG. 8. �Color online� Scaling function �Q2 ,S� as computed
numerically for two values of Q2. For each Q, we report results
corresponding to three different values of � and L.
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FIG. 9. �Color online� Ratio G̃�k , t� / G̃�0, t���Q2 ,S� /�0,S�
obtained at �=0.282, L=128 versus S. Results correspond to dif-
ferent values of Q2=4�2n2�2 /L2. The values n=2, 4, 8, 12, and 20
correspond to Q2�0.84, 3.37, 13.5, 30.3, and 84.
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the quality of the collapse worsens and the best result is
obtained for �=1.9. These results indicate that ��2 �but
with a large error�, so that �Q2 ,S� behaves roughly as
Q−2Sa exp�−�S�. It is interesting to observe that this is ex-
actly the behavior predicted close to four dimensions by per-
turbation theory.

Finally, we determine an interpolation formula for
�Q2 ,S�. We find that all data are well-fitted by taking

�Q2,S� = a0e−�1S + �
k=1

4

ak
�cS�k

1 + �cS�4e�1S + �
k=0

4

dkS
ke−�2S,

�81�

fixing �1=0.840. The results of the fits for a few chosen
values of Q2 are reported in Table II. We have not required
a0+d0=1, a condition that follows from �Q2 ,S=0�=1, but
we have verified that the results satisfy this condition quite
precisely. By using a linear interpolation, the results we re-
port should allow the reader to determine �Q2 ,S� for any Q
in the range 0�Q2�50 with reasonable precision. We stress
that this interpolation formula only represents a compact ex-
pression that summarizes the numerical results. The chosen
parametrization has indeed a purely phenomenological value.

From these expressions it is easy to determine the scaling
function ��Q2 ,w� related to the dynamic structure factor. In
Fig. 11 we plot the scaling function ��Q2 ,w� as obtained by
integrating the interpolating function determined above. We
report it for the same values of Q2 that appear in Table II.

The qualitative behavior is in full agreement with the FT
prediction, compare with Fig. 5. Quantitatively, perturbation
theory is also reasonably predictive. For Q=0 and w�5, the
relative differences between the FT and the numerical ex-
pression are less than 2%. For larger values of Q2 differences
increase: for instance, for the values of Q that appear in Fig.
11, field theory predicts ��Q2 ,0��2, 1.09, 0.32, 0.091, and
0.041, while we obtain numerically ��Q2 ,0��2, 1.09, 0.33,
0.105, and 0.072. These discrepancies are probably the fault
of both field theory—after all, we are at one loop—and of
the numerical results—for large Q the data are noisy and the
estimates have a large error. In any case this comparison
indicates that, up to Q=5, errors are under control and the
reported expressions are precise enough for all practical pur-
poses.

APPENDIX A: PERTURBATIVE RESULTS
FOR THE STATIC STRUCTURE FACTOR

The static behavior of Ising systems with random dilution
can be studied starting from the Landau-Ginzburg-Wilson
Hamiltonian �45�
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FIG. 10. �Color online� Ratio Q�G̃�k , t� / G̃�0, t�
�Q��Q2 ,S� /�0,S� obtained at �=0.282, L=128 versus S. Re-
sults correspond to different values of Q2=4�2n2�2 /L2. The values
n=2, 4, 8, 12, and 20 correspond to Q2�0.84, 3.37, 13.5, 30.3, and
84. The figure on the top corresponds to �=1.9, that on the bottom
to �=2.3.

TABLE II. Numerical values of the coefficients appearing in the
interpolation formula �81�.

Q2=0.842 Q2=5.262 Q2=21.05 Q2=47.36

a0 −2.30388 0.0972492 −0.1390160 −0.1482217

a1 1.85440 −0.1867741 −0.0166780 0.0609449

a2 −1.03426 0.2245075 0.0882145 −0.0108184

a3 −1.04434 −0.0670895 −0.0483811 −0.0040681

a4 2.29488 −0.0788428 0.1494524 0.1510844

d0 3.30388 0.9027518 1.1390167 1.1482211

d1 −1.87228 −0.5008092 −13.808512 −19.439356

d2 2.03391 12.846119 114.32824 182.53584

d3 −0.64676 −27.878988 −319.65479 −587.00842

d4 0.13949 58.784027 519.97023 1021.6385

�2 1.95 9.08 10.46 12.40

c 2.000 1.124 1.087 1.282
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FIG. 11. �Color online� Numerical estimate of the scaling func-
tion ��Q2 ,w� as a function of w���int�0�, as obtained by integrat-
ing the interpolating expression �81�. The values of the momenta
are Q0=0, Q1

2=0.842, Q2
2=5.262, Q3

2=21.05, and Q4
2=47.36.
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H =
 ddx�1

2
��!"�2 +

1

2
r"2 +

1

2
�"2 +

1

4!
g0"

4� , �A1�

where ��x� is a spatially uncorrelated random field with
Gaussian distribution

P��� =
1

�4�w
exp�−

�2

4w
� . �A2�

Using the standard replica trick, it is possible to replace the
quenched average with an annealed one. As a result of this
procedure, one can investigate the static critical behavior of
RDI systems by applying standard FT methods to the Hamil-
tonian �45�

Hreplica =
 ddx��
i

1

2
���!#i�2 + r#i

2�

+ �
ij

1

4!
�u0 + g0$ij�#i

2# j
2� , �A3�

where i , j=1, . . . ,N and u0=−6w. RDI results are obtained
by taking the limit N→0.

1. ��-expansion results

The scaling function g�Q2� can be determined by using
the results reported in Ref. �37�. We obtain the expansion

g�y�−1 = 1 + y − �
1

53
�2�y� + 18

�6/53

2809
�24 + 7��3���3/2�2�y�

+ O��2�

= 1 + y − 0.018 867 9��2�y� + 0.069 887�3/2�2�y�

+ O��2� , �A4�

where �2�y� is the two-loop contribution defined in Ref. �37�.
Note that the only relevant three-loop diagram contributes
only at order �5/2 �hence at five loops�, since it is propor-
tional to

1

27
�u + 3v��4u + 3v�2, �A5�

and, at the fixed point, 4u*+3v* is of order � and not of
order ��.

The expansion of �2�y� for small y can be found in Ref.
�37�. It allows us to obtain the expansions

c2 = 0.000 141 891� − 0.000 525 567�3/2 + O��2� ,

c3 = − 3.621 34� 10−6� + 0.000 013 413 5�3/2 + O��2� ,

c4 = 1.536 23� 10−7� − 5.690 21� 10−7�3/2 + O��2� ,

c5 = − 8.285 75� 10−9� + 3.069 05� 10−8�3/2 + O��2� .

�A6�

The expansion of �2�y� for large values of y is �39�

�2�y� = −
1

4
y log y + 2Q0y −

3

4
log2 y + 2Q1 + ¯ �A7�

with Q0�0.507 826 and Q1�0.1289. Matching the large-
momentum expansion of Eq. �A4� with the Fisher-Langer
behavior �20� we obtain the expansions of the coefficients Ci:

C1 = 1 + 0.019 163 2� − 0.070 980 9�3/2 + O��2� ,

C2 = − 1/2 − 0.757 042�1/2 + 1.342 97� + c2,3�
3/2 + O��2� ,

C3 = − 1/2 + 0.757 042�1/2 − 1.357 26� + c3,3�
3/2 + O��2� ,

�A8�

where c2,3+c3,3=0.052 964. Setting �=1, we obtain C1
�0.95, C2+C3=−0.96.

2. Massive zero-momentum results

We have determined the low-momentum behavior of
g�Q2�−1 in the MZM scheme by using the perturbative results
of Ref. �37�. The four-loop expansions of the first few coef-
ficients cn are

c2 = −
1

6480
u2 −

1

2430
uv −

2

10 935
v2 − 0.000 012 040 4u3

− 0.000 048 161 7u2v − 0.000 048 161 7uv2

− 0.000 014 270 1v3 − 0.000 007 189 72u4

− 0.000 038 345 2u3v − 0.000 061 707 4u2v2

− 0.000 037 911 6uv3 − 0.000 008 424 79v4,

c3 =
1

122 472
u2 +

1

45 927
uv +

4

413 343
v2

− 0.000 002 819 24u3 − 0.000 011 276 9u2v

− 0.000 011 276 9uv2 − 0.000 003 341 32v3

+ 0.000 006 600 26u4 + 0.000 003 520 14u3v

+ 0.000 005 628 91u2v2 + 0.000 003 393 71uv3

+ 0.000 000 754 158v4,

c4 = −
1

1 889 568
u2 −

1

708 588
uv −

1

1 594 323
v2

+ 0.000 000 347 995u3 + 0.000 001 391 98u2v

+ 0.000 001 391 98uv2 + 0.000 000 412 438v3

− 0.000 000 141 114u4 − 0.000 000 752 609u3v

− 0.000 001 196 27u2v2 − 0.000 000 740 733uv3

− 0.000 000 164 607v4. �A9�

The MZM renormalized quartic couplings u and v are nor-
malized so that at tree level u=u0 /m and v=v0 /m. Their
fixed-point values are u*=−18.6�3� and v*=43.3�2� �ob-
tained by means of MC simulations �27��, and u*
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=−13.5�1.8� and v*=38.0�1.5� �obtained by resumming the
six-loop � function �22��.

APPENDIX B: ONE-LOOP CALCULATION
OF THE RESPONSE AND CORRELATION FUNCTIONS

The relaxational model-A dynamics is described by the
stochastic Langevin equation �4�

�"�r,t�
�t

= −�
$H�"�
$"�r,t�

+ ��r,t� , �B1�

where "�r , t� is the order parameter, H�"� is the Hamiltonian
�A1�, � is a transport coefficient, and ��r , t� is a Gaussian
random field �white noise� with correlations

���r,t�� = 0, ���r1,t1���r2,t2�� =�$�r1 − r2�$�t1 − t2� .

�B2�

The correlation functions generated by the Langevin equa-
tion �B1� at equilibrium, averaged over the noise � and the
quenched disorder �, can be obtained from the FT action
�46�

S�","̂� =
 ddx�
 dt"̂��t" −� " −�"̂ +�r"�

+
�g0

3!

 dt"̂"3 +

�2u0

6
�
 dt"̂"�2� , �B3�

where "̂ is the response field. In this framework, no replicas
are introduced �46�. We consider the correlation function
G�x , t� and the response function R�x , t� defined by

G�x2 − x1,t2 − t1� = �"�x1,t1�"�x2,t2�� , �B4�

R�x2 − x1,t2 − t1� = �"̂�x1,t1�"�x2,t2�� , �B5�

and their spatial Fourier transforms G̃�k , t� and R̃�k , t�. In
equilibrium, they are not independent, but related by the
fluctuation-dissipation theorem; for t�0 they satisfy the re-
lation �tG�x , t�=−�R�x , t�. For a general introduction to the
FT approach to equilibrium critical dynamics, see, e.g., Refs.
�47,48�. Some perturbative calculations can be also found in
Ref. �49�.

One-loop calculation

We first compute the response function R̃�k , t� and then
use the fluctuation-dissipation theorem to derive the correla-

tion function G̃�k , t�. At one-loop we obtain in dimensional
regularization

R̃�k,t� = R̃G�k,t� −
g0

2
Lg�k,t� −

u0

3
Lu�k,t� + O�u0

2,u0g0,g0
2� ,

�B6�

where

R̃G�k,t� = %�t�exp�−��k2 + r�t� �B7�

is the Gaussian tree-level response function, and Lu�k , t� and
Lg�k , t� are the one-loop contributions, see Fig. 12. It is
straightforward to obtain

Lg�k,t� =�

−�

�

ds
 ddq

�2��d R̃G�k,t − s�R̃G�k,s�G̃G�q,0�

= −
Nd

�
r1−�/2�tR̃G�k,t� , �B8�

where ��4−d, Nd�2 / ��d /2��4��d/2�, and G̃G�k , t� is the
Gaussian tree-level correlation function �59�. Analogously,
we obtain

Lu�k,t� =�2

−�

�

ds1

−�

�

ds2
 ddq

�2��d

�R̃G�k,t − s2�R̃G�q,s2 − s1�R̃G�k,s1�

=
Nd

�
�1 + ��E/2���t��/2��tk2 − 1�R̃G�k,t�

+ %�t�
1

�4��2e−�trF��tk2� + O��� , �B9�

where

F�x� � − 1 + e−x + e−x�x − 1��Ei�x� − �E − ln x� ,

�B10�

and Ei�x� is the exponential integral function.
Renormalizing the response function in the MS scheme

we obtain

R̃�k,t� = R̃G�k,t� −
g

32�2�tr ln rR̃G�k,t� �B11�

−
u

48�2 ��E + ln�t���tk2 − 1�R̃G�k,t�

−
u

48�2%�t�e−�trF��tk2� , �B12�

where r, �, u, and g are renormalized parameters �note that
we use the same symbols r and � for both the bare and the
renormalized parameters, since no confusion can arise�. The

FIG. 12. The one-loop graphs contributing to the response func-
tion. We indicate with Lg�k , t� and with Lu�k , t� the contribution of
the graph on the top and on the bottom, respectively.
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final expression is obtained by setting g and u equal to their
fixed-point values:

g* = 32�2�6�

53
, u* = − 24�2�6�

53
. �B13�

The correlation function G̃�k , t� for t�0 can be obtained
from

G̃�k,t� =�

t

�

R̃�k,t� , �B14�

which follows from the fluctuation-dissipation theorem and

the fact that G̃�k , t�→0 as t→�. A straightforward calcula-
tion gives �in the following we always assume t�0�

G̃�k,t�

G̃�k,0�
= e−�t�k2+r� −

g

32�2�tr�ln r�e−�t�k2+r� −
u

48�2

���E + ln�t��tk2e−�t�k2+r� −
u

48�2 �e−�t�k2+r�

− e−�tr� −
u

48�2��tk2 −
r

k2 + r
�e−�t�k2+r��Ei��tk2�

− �E − ln�tk2� −
u

48�2

r

k2 + r
�Ei�−�tr� − e−�t�k2+r�

���E + ln�tr�� , �B15�

where

G̃�k,0� =
1

k2 + r
−

1

32�2 �g + 2u/3�
r ln r

�k2 + r�2 . �B16�

It is easy to derive the critical correlation function at one-
loop order from Eq. �B15�. Taking the limit r→0, we obtain

G̃�k,t�

G̃�k,0�
= e−�tk2

−
u

48�2

���E + ln�t��tk2e−�tk2
−

u

48�2 �e−�tk2
− 1�

−
u

48�2�tk2e−�tk2
�Ei��tk2� − �E − ln�tk2� .

�B17�

In the critical limit the correlation function should only de-
pend on the scaling variable K2�k2��t�2/z. Keeping into ac-
count that z=2−u / �24�2� at one loop, we obtain at this order
�we set u=u*�

G̃�k,t�

G̃�k,0�
= e−K2

−
u*

48�2
�e−K2

− 1�

−
u*

48�2
K2e−K2

�Ei�K2� − ln K2� . �B18�

This scaling function has a regular expansion in powers of
K2 for K→0, while, for K→�, it behaves as

G̃�k,t�

G̃�k,0�
� −

u*

48�2K2
=

1

2K2�6�

53
. �B19�

Given Eq. �B18�, we can compute G�x , t� at the critical point.
We expect the scaling behavior

G�x,t� = ��t�−�d+�−2�/zF�X�, X � x��t�−1/z. �B20�

Using Eq. �B18� we obtain

F�X� =
1

4�2X2 �1 − e−X2/4� −
u*

48�2
F1 loop�X� , �B21�

with

F1 loop�X� =
1

4�2X



0

�

dKJ1�KX��e−K2
− 1

+ K2e−K2
�Ei�K2� − ln K2�� , �B22�

where J1�x� is a Bessel function. In the derivation we have
taken into account that u	��. It is interesting to note that
F1 loop�X� is not regular for X→0. Indeed, the explicit calcu-
lation gives

F1 loop�X� = −
1

16�2 ln
X2

4
+ O�X2 ln X2� . �B23�

This result indicates that F�X� is not regular for X→0, but
behaves as

F�X� � a0 + b0�X�� + ¯ , �B24�

where � is a critical exponent. Comparing this expression
with Eqs. �B21� and �B23� we obtain

a0 + b0 =
1

16�2 + O���� , �B25�

b0� =
u*

384�4
+ O��� = −

1

16�2�6�

53
+ O��� . �B26�

It is not possible to compute �, a0, and b0 separately at this
order. A two-loop computation of the term proportional to
�ln2 X is needed.

In the high-temperature phase, it is convenient to replace
r and � with the correlation length � and the zero-
momentum integrated autocorrelation time �int�k=0�, defined
in Secs. III A and IV A, respectively. A tedious calculation
gives

�−2 = r +
1

32�2 �g + 2u/3�r ln r , �B27�

��int�k� =
1

k2 + r
−

g

32�2

r ln r

�k2 + r�2 +
u

48�2

k2 ln r

�k2 + r�2

+
u

48�2

1

k2 + r
. �B28�

Using these results, we obtain the one-loop expression of the
scaling function �Q2 ,S�:
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�Q2,S� = e−S�Q2+1� −
u*

48�2
S�Q2 + 1�e−S�Q2+1� −

u*

48�2

���E + ln S�SQ2e−S�Q2+1� −
u*

48�2
�e−S�Q2+1� − e−S�

−
u*

48�2�Q2S −
1

Q2 + 1
�e−S�Q2+1��Ei�SQ2� − �E

− ln SQ2� −
u*

48�2

1

Q2 + 1
�Ei�− S� − e−S�Q2+1���E

+ ln S�� , �B29�

where u* is the fixed-point value �B13� of u.
It is interesting to discuss the large-S and small-S behav-

ior of the scaling function �B29�. For large S we obtain

�Q2,S� � e−S�1+Q2� −
u*

48�2

1 + Q2

�Q2�2

e−S

S2 −
u*

48�2

��1 + Q2 − Q2 ln Q2�Se−S�1+Q2�. �B30�

For Q2=0 the dominant term is the last one. In this case we
can rewrite the large-S behavior as

�Q2,S� � exp�− S�1 +
u*

48�2
�� , �B31�

which gives for the exponential autocorrelation-time scaling
function �see Eq. �52��

fexp�0� = 1 −
u*

48�2
= 1 +

1

2
�6�

53
+ O��� . �B32�

For Q2�0, the dominant term is the second one, so that for
any Q2 the scaling function decays as e−S /S2. Thus at this
perturbative order, we obtain the result

fexp�Q2� = 1 + O���� . �B33�

The correlation function �Q2 ,S� decays with the same rate
for all values of Q. As we discuss in Sec. IV B, this is a
consequence of the loss of translational invariance in dilute
systems.

Equation �B33� should be contrasted with the result ob-
tained for the integrated autocorrelation times. Using Eq.
�B28�, we obtain

�int�k�
�int�0�

= f int�Q2� =
1

Q2 + 1
, �B34�

without one-loop corrections. This shows that �int�k� de-
creases as Q increases as it does in the Gaussian model.

Let us now consider the limit S→0. The scaling function
has an expansion of the form

�Q2,S� = 1 + �
n=1

Sn�an + bn ln S� . �B35�

Note the presence of terms proportional to ln S. They should
be generically expected, since in the critical limit �it corre-
sponds to Q→� and S→0� the correlation function depends
on

k2��t�2/z 	 Q2S2/z 	 Q2S�1 +
u*

48�2
ln S� . �B36�

The presence of these logarithms implies that the function
�Q2 ,S� is not analytic for S→0.

It is also important to discuss the large-momentum behav-
ior of �Q2 ,S�. For Q2→� the tree-level term vanishes ex-

ponentially as e−SQ2
, while the one-loop term decays only

algebraically, as 1 /Q2. More precisely, for Q2→� we have

�Q2,S� � −
u*

48�2� e−S

S
+ Ei�− S��Q−2. �B37�

The presence of these slowly decaying terms implies the sin-
gularity of the behavior of G�x , t� for x→0 and for any t. In
the critical limit we expect the scaling behavior �70�, i.e.,
G�x , t�=�−d+2−�F�Y2 ,S�, with Y2�x2 /�2. We obtain for Y
→0

F�Y2,S� �
1

16�2� e−S

S
+ Ei�− S���1 +

u*

24�2
ln Y�

+ u*fcorr�S� + ¯ �B38�

for Y →0, where fcorr�S� is a function of S. The presence of a
term proportional to ln Y implies that F�Y2 ,S� is not analytic
as Y →0, i.e., has a behavior of the form F�Y2 ,S�= f0�S�
+ f��S��Y��+¯, where � is the same exponent that appears in
Eq. �B24�. Note that Eq. �B38� is apparently consistent with
the assumption that f0�S�=0. If this were the case, we would
obtain

� =
u*

24�2
= −�6�

53
+ O��� . �B39�

This result would imply ��0 and thus F�Y2 ,S� would di-
verge as Y →0 for any S, at least for � small. This behavior
is clearly unphysical; thus f0�S� should be nonvanishing.

The critical limit is obtained by taking S→0. Requiring
the limiting function to be of the form �B20�, we obtain

f0�S� 	 S�2−�−d�/z,

f��S� 	 S�−�+2−�−d�/z �B40�

for S→0. The S-dependent prefactor appearing in Eq. �B38�
behaves as 1 /S for S→0, which is consistent with these
expressions.

The nonanalytic behavior of F�Y2 ,S� as Y →0 implies
that �Q2 ,S� should decay as a power of Q as Q→�. A
simple calculation gives

�Q2,S� 	 f��S�Q2−d−�−� �B41�

for Q2→�. The exponent � defined in Eq. �69� is given by

� = � + d + � − 2 = 2 + O���� . �B42�

Finally, we report ��Q2 ,w�, cf. Eq. �56�. A long calculation
gives
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��Q2,w� =
2�

�2 + w2 +
u*

24�2����2 − w2 + 2�w2�
w��2 + w2�2 arctan w

+
���2 − w2 − 2��

2��2 + w2�2 ln�1 + w2� +
1

w2 + 1

+
�w2 − ��Q2

�w2 + 1���2 + w2�
−

2�3

��2 + w2�2� , �B43�

where ��1+Q2.
For large w, ��Q2 ,w� behaves as

��Q2,w� �
2�

w2 �1 +
u*

48�2
�1 − ln w�� , �B44�

which is compatible with the expected behavior w−�2−�+z�/z.
Note also that the singularities of ��Q2 ,w� in the complex

w plane that are closest to the origin are w=� i, indepen-
dently of Q2. This is a direct consequence of the fact we have
already noticed that the large-t behavior is momentum inde-
pendent. As a consequence, the width of the structure factor
does not decrease with Q2 as it does in pure systems.
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